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a b s t r a c t

To protect solid oxide fuel cell (SOFC) stack and meet the voltage demand of DC type loads, two control
loops are designed for controlling fuel utilization and output voltage, respectively. A Hammerstein model
of the SOFC is first presented for developing effective control strategies, in which the nonlinear static
part is approximated by a radial basis function neural network (RBFNN) and the linear dynamic part is
modeled by an autoregressive with exogenous input (ARX) model. As we know, the output voltage of the
SOFC changes with load variations. After a primary control loop is designed to keep the fuel utilization as
a steady-state constant, a nonlinear model predictive control (MPC) based on the Hammerstein model is
developed to control the output voltage of the SOFC. The performance of the MPC controller is compared
with that of the PI controller developed in [Y.H. Li, S.S. Choi, S. Rajakaruna, An analysis of the control and
operation of a solid oxide fuel-cell power plant in an isolated system, IEEE Trans. Energy Convers. 20 (2)
(RBFNN)

Autoregressive with exogenous input (ARX)
Genetic algorithm (GA)
Model predictive control (MPC)

(2005) 381–387]. Simulation results demonstrate the potential of the proposed Hammerstein model for
application to the control of the SOFC, while the excellence of the nonlinear MPC controller for voltage
control of the SOFC is proved.
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. Introduction

Distributed generation (DG) is a promising technology that can
e used to address some of the technical as well as environmen-
al concerns in power systems. As a kind of high-temperature fuel
ell, solid oxide fuel cell (SOFC) presents an attractive option for the
G technology because it is modular, efficient and environmentally

riendly. Unlike other types of fuel cells, the SOFC is entirely solid
tate with no liquid components. It usually works at a high temper-
ture, in the range of 800–1000 ◦C to reach the electrolytes ionic
onductivity requirement [1].

SOFC is a dynamic device which will affect the dynamic behav-
or of the power system to which it is connected. Analysis of such

behavior requires an accurate dynamic model. In the last sev-
ral decades, fruitful results on modeling the nonlinear dynamics
f the SOFC have been obtained [2–5]. However, most of these mod-

ls emphasized the detailed description of cell internal processes,
uch as component material balance, energy balance and electro-
hemical kinetics, etc. These models are very useful to analyze
he transient characteristics of the SOFC, but they are too com-
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licated to be used in controller design. For developing effective
ontrol strategies, Jurado et al. [6,7] have presented identification
odels for a SOFC. However, one of the most important cell per-

ormance variables, fuel utilization, has not been examined when
he authors explored the SOFC dynamic response after the distur-
ances. Furthermore, they have not considered the fuel processor

n their investigation.
Nonlinear input–output block-oriented models, such as Ham-

erstein and Wiener, do not require much fundamental knowledge
bout a system, and they are relatively easy to be constructed using
rocess data. The Hammerstein model consists of a static nonlin-
ar block followed in series by a dynamic linear block. It is a type of
ommonly used nonlinear models, and has been successfully used
o model a class of nonlinear systems [8–12]. The identification of
he Hammerstein system involves estimating both the nonlinear
nd the linear blocks from the input–output observations. There
xist a large number of identification methods for the Hammer-
tein model, and most assume the nonlinearity is a polynomial of
nite and known order. However, if the nonlinearity is not a polyno-

ial and the input is not Gaussian, these algorithms fail to converge

13]. To overcome the aforementioned deficiencies, Narendra and
arthasarathy [14] have pointed out that a neural network could
e used as a nonlinear operator in a Hammerstein model. Com-
ared with other types of artificial neural network (ANN), radial

http://www.sciencedirect.com/science/journal/03787753
mailto:haibo761028@yahoo.com.cn
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Nomenclature

E0 ideal standard potential (V)
E open-circuit reversible potential (V)
IFC stack current (A)
Kr constant with the value of N0/4F (mol s−1 A−1)
Ki valve molar constants for hydrogen, oxygen and

water (mol s−1 atm−1)
Nr

H2
hydrogen reacted flow rate (mol s−1)

Nf natural gas input flow (mol s−1)
N0 number of cells in the stack
Nin

H2
hydrogen input flow rate (mol s−1)

Nin
O2

oxygen input flow rate (mol s−1)

Nout
H2

hydrogen output flow rate (mol s−1)
pi partial pressures of hydrogen, oxygen, and water

(atm)
rH O ratio of hydrogen to oxygen
r ohmic loss (�)
T stack operating temperature (K)
u fuel utilization
us desired utilization in steady state
Vdc stack output voltage (V)

Greek letters
�f fuel processor response time (s)
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�i response times for the flow of hydrogen, oxygen and
water (s)

asis function neural network (RBFNN) has a number of advantages,
uch as better approximation properties, simpler network struc-
ures and faster learning algorithms. To develop effective control
trategies, a Hammerstein model of the SOFC is presented firstly, in
hich the nonlinear static part is approximated by a RBFNN and the

inear dynamic part is modeled by an autoregressive with exoge-

ous input (ARX) model. In addition, in the Hammerstein modeling
he fuel processor is included and the operating issue about the fuel
tilization is considered specifically.

Model predictive control (MPC) refers to a class of algorithms
hat compute a sequence of manipulated variable adjustments in

n
i
s
i
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Fig. 1. SOFC dyna
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rder to optimize the future behavior of a plant. Garcia et al. [15]
ave indicated that MPC was emerging as one of the most pop-
lar and effective control techniques in process industries. It has
ecome an industry standard mainly due to its intrinsic capability
or dealing with constraints and multivariable system.

SOFC produces DC electric power from fuel and oxidant via
n electrochemical process. Any change in the load circuit or its
emand for power changes the operating conditions for the SOFC.
s a result, the output voltage of the SOFC will have a high fluc-

uation in response to the changes. Furthermore, if these changes
ause the SOFC to work in the overused or underused fuel condi-
ions, the actual performance of the FC will be affected. In order to

eet the voltage demand of DC type loads and keep the fuel utiliza-
ion constant by controlling the natural gas input flow, MPC scheme
ased on the Hammerstein model and a primary control loop are
eveloped in this paper.

The rest of this paper is organized as follows. In Section 2, the
OFC dynamic model proposed in [5,16,17] is briefly reviewed. The
etailed identification structure and identification algorithms of
he Hammerstein model are given in Section 3. In Section 4, the MPC
s formulated. Some simulation results are depicted to show the
alidity of the Hammerstein model and the practical applicability
f the proposed control strategies to control the fuel utilization and
he output voltage in Section 5. Finally, conclusions and suggestion
or future work are presented in Section 6.

. Theory for the dynamic model of SOFC

Based on the work reported in [5,16,17], the SOFC dynamic model
s briefly reviewed in this section. The SOFC dynamic model includ-
ng the fuel processor adopted in this paper is shown in Fig. 1 [16].

.1. The balance of plant (BOP)

The BOP consists of the natural gas fuel storage, the fuel valve
ontrolled by its controller, and the fuel processor that reforms the

atural gas input Nf to the hydrogen-rich fuel NH2

. In [5], the authors
ntroduced a simple model of a fuel processor that converts fuels
uch as natural gas to hydrogen and byproduct gases. The model
s a first-order transfer function with time constant �f. Hence, the
uel processor is simply represented by this first-order model.

mic model.
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�i(u(k)) = exp −||u(k) − ci||2
2d2

i

(12)

is the Gaussian function. M is the number of hidden node, ci and di
are the centers and widths of the ith RBF hidden unit, respectively.
40 H.-B. Huo et al. / Journal of P

Although CO can be a fuel in the SOFC, we suppose all CO will
ake part in the CO-shift reaction if the gas contains water [5]. Thus,
he overall cell reaction of the SOFC is:

2 + 1
2 O2 → H2O (1)

rom Eq. (1), it is seen that the stoichiometric ratio between hydro-
en and oxygen is 2 to 1. Oxygen excess is always taken in to let
ydrogen react with oxygen more completely. So, in this paper the
ow ratio of hydrogen to oxygen is kept at 1.145 [16].

.2. Solid oxide fuel cell

The SOFC consists of hundreds of cells connected in series or in
arallel. By regulating the fuel valve, the amount of fuel into the
OFC can be adjusted, and the output voltage of the SOFC can be
ontrolled.

The Nernst’s equation and Ohm’s law determine the average
oltage magnitude of the fuel cell stack. Hence, applying Nernst’s
quation and Ohm’s law (taking into account ohmic losses), the
utput voltage of the SOFC can be modeled as follows [16,17]:

dc = E − rIFC (2)

= N0E0 + N0RT

2F
ln

pH2 p0.5
O2

pH2O
(3)

here

H2 (s) = 1/KH2

1 + �H2 s
(Nin

H2
− 2KrIFC) (4)

O2 (s) = 1/KO2

1 + �O2 s
(Nin

O2
− KrIFC) (5)

H2O(s) = 1/KH2O

1 + �H2Os
2KrIFC (6)

.3. Fuel utilization

Fuel utilization is one of the most important operating variables
ffecting the performance of FC. It is defined as [5]:

=
Nin

H2
− Nout

H2

Nin
H2

=
Nr

H2

Nin
H2

= N0IFC

2FNin
H2

(7)

here Nr
H2

is the hydrogen reacted flow rate. When the stack is
perated at a high fuel utilization, both the voltage and power den-
ity decrease. Furthermore, if fuel utilization is too large, it becomes
mpossible for the SOFC to sustain the voltage across the load. How-
ver, it is a great waste under a low fuel utilization when there is no
ycling of the anode gas flow. Therefore, the fuel utilization should
e carefully selected to achieve the high SOFC performance. In this
nalysis, the fuel utilization is varied from 0.7 to 0.9, according to
16,17].

To protect the SOFC stack and avoid large deviations in the ter-
inal voltage due to changes in the stack current, we will hold the

tilization constant. According to Eq. (7), the operation of the SOFC
tack with a fuel input proportional to the stack current results in a
onstant utilization factor in the steady state. Thus, the SOFC stack
s operated with constant steady-state utilization by controlling the
atural gas input flow to the stack as [17]:

N I

f = 0 FC

2Fus
(8)

here us is the desired utilization in steady state. Furthermore,
ecause the fuel processor is specially considered in the dynamic
odeling of the SOFC, the relationship between a small change of
Fig. 2. Hammerstein model.

tack current �IFC and a small change of hydrogen input �Nin
H2

fed
o the SOFC stack can be derived as [17]:

Nin
H2

= N0

2Fus(1 + �fs)
�IFC (9)

. Hammerstein model

.1. Problem statement

In this section, we will consider the problem of estimating a
odel for a Hammerstein system based on the input–output data,

.e., {ui}i = 1, . . ., n and {yi}i = 1, . . ., n. The Hammerstein model consists
f a RBFNN for identification of the static nonlinearity, in series
ith an ARX model for identification of the linear part. The struc-

ure of the Hammerstein model adopted in this paper is illustrated
n Fig. 2, where u(k) and y(k) are the input and the output of the
ammerstein model at the kth sampling instant, respectively, and
(k) is the output of the RBFNN which is usually unmeasurable. The
utput of the Hammerstein model is expressed as:

(k) = −
na∑
i=1

aiy(k − i) +
nb∑
j=0

bjx(k − j) (10)

here ai (i = 1, . . ., na) and bj (j = 0, . . ., nb) are the parameters of the
RX model, na and nb are integers related to the model order and

he function.
The static nonlinear part in the Hammerstein model is repre-

ented by using the RBFNN depicted in Fig. 3 as:

(k) =
M∑

i=1

wi�i(u(k)) (11)

here ( )
Fig. 3. RBF neural network.
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where �̂ = [â1, â2, . . . , âna , b̂0, b̂1, . . . , b̂nb
]
T

is the estimated
H.-B. Huo et al. / Journal of P

i is the connection weights from the ith hidden node to the output,
|·|| denotes the Euclidean norm.

.2. Identification of the Hammerstein model

Identification of the Hammerstein model involves estimating
he hidden centers, the radial basis function widths and the con-
ection weights of the RBFNN, and the orders and the parameters
f the ARX model.

The learning procedure of the RBFNN mainly includes two parts,
.e., the hidden centers and the radial basis function widths are
etermined firstly, followed by the adjustment of the connection
eights. The standard RBFNN training method is time-consuming,

ince it requires examining many different network structures
sing a trial and error procedure. In addition, the standard training
ethod determines the hidden centers by a clustering approach
hich usually results in a large number of selected centers [18].

urthermore, it is frequently observed that error correction learn-
ng algorithms, which aim to provide the most appropriate weights,
pproach to local optima due to their gradient-based attitude.

On the other hand, in most cases of the ARX identification, only
he parameters of the ARX model need to be identified and the
tructure is given beforehand. However, like the other modeling
equirements, the model structure is a vital and difficult issue to
ddress [19]. In fact, it is hard to guess a correct model structure
or the ARX model if little information of the system is known. An
nappropriate model structure will degrade the performance of the
RX identification process badly no matter which algorithm is used

o estimate the parameters. Therefore, selecting a proper model
tructure for the ARX model is as critical as estimating the model
arameters.

Genetic algorithm (GA) is a kind of global search algorithm based
n the mechanics of natural selection and population genetics. It
as been successfully applied to a variety of optimization problems.
or instance, it has been employed to identify the parameters of the
RX and non-linear ARX (NARX) models, and to select the optimal
odel structures of RBFNN and recurrent neural network (RNN).

n this study, GA is adopted to optimize the hidden centers, the
adial basis function widths and the weights of the RBFNN, and
he structure of the ARX model which is entirely defined by the
ntegers na and nb at the same time. After the ARX model structure
s determined, the parameters of the ARX model can be estimated
y the least squares (LS) algorithm.

.2.1. Optimization of the RBFNN and the ARX model structure
ased GA

GA is an iterative stochastic methodology which derives its
ehavior from the process of evolution in nature. It starts with a ran-
om population of possible solutions (chromosomes). The fitness
f each chromosome is measured by computing the corresponding
alue of a fitness function. Then new generations are produced by
iving more probabilities of surviving to the individuals with the
est fitness values. As the algorithm proceeds, the members of the
opulation are gradually improved. The parallel searching mech-
nism is the main advantage of the GA, since it is unlikely to get
rapped in local minima.

Before optimizing, some GA parameters such as population size
, crossover probability pc, mutation probability pm, the maximum
umbers of iterations, etc., need to set. The optimizing process of
he GA is given as follows:
1) Encoding: Encoding is the first and an important part of the GA
process. Binary coding is normally used and has been proved to
be optimal in certain cases [20]. In this study, the binary coding
scheme is adopted. In encoding, every chromosome includes

p

H

Y

ources 185 (2008) 338–344 341

the hidden centers, the radial basis function widths and the
weights of the RBFNN, and the orders of the ARX model. To
obtain the desired accuracy, eight bits binary code is selected
to encode each parameter above.

2) Fitness function: The fitness function has a great affect on the
convergence speed of the GA process. To derive the GA search
process towards the location of the best solution, the fitness
function should be able to reflect the key properties of the
Hammerstein model. If the fitness function contains inadequate
information about the Hammerstein model, it will not be capa-
ble of identifying a chromosome with superior characteristics
[21]. The fitness function in this paper is chosen as [22]:

fi = Jworst − Ji(i = 1, 2, . . . , P) (13)

where Jworst implies the Akaike Information Criterion (AIC) for
the worst individual, i.e.,

Jworst = max
i

Ji (14)

Here, Ji denotes the AIC of the ith individual defined by:

Ji = N log(Ei) + 2(na + nb) (15)

where

Ei = 1
N

N∑
k=1

(y(k) − ŷ(i)(k))
2

(16)

where, ŷ(i)(k) is the estimated output of the ith individual at
time step “k” of the Hammerstein model, N is the number of
sample points, Ei is the mean square error between the actual
output and estimated output of the ith individual.

3) Genetic operations:
Selection: After the fitnesses of all the chromosomes are
evaluated, the GA enters the selection phase. According
to the fitness values, better solution candidates (individ-
uals) are selected. The most familiar selection procedure
is fitness-proportional selection (roulette wheel selection).
So the roulette wheel selection strategy is adopted in this
study.
Crossover: Crossover is a probabilistic process that
exchanges information between two parent chromosomes
for generating two offspring. Here single-point crossover
with a fixed crossover probability of pc is selected.
Mutation: Generally, over a period of several generations,
the gene pool tends to become more and more homo-
geneous as one gene begins to dominate. So, a mutation
operator is introduced to guard against premature conver-
gence. Mutation randomly alters the gene from 0 to 1 or
from 1 to 0 with probability pm. The mutation probabil-
ity is set a very small value, usually chosen in the range of
0.001–0.01.

.2.2. Parameter identification of the ARX model
After the ARX model structure is determined, the LS algorithm

s adopted to estimate the parameters of the ARX model, i.e.,

ˆ T −1 T
arameters of the ARX model and

= [h(1), h(2), . . . , h(N)]T
N×(na+nb+1) (18)

= [y(1), y(2), . . . , y(N)]T
N×1 (19)
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According to Eq. (8), we can regulate the natural gas input
flow to hold the utilization as steady-state constant in the pres-
ence of external disturbances. To prove the validities of the control
strategies, we choose the current disturbance as a multiple step

Table 1
SOFC operating point data

Item Value

N0 384
T 1273 K
IFC,rate 300 A
us 0.8
E0 1.18 V
KH2 0.843 mol s−1 atm−1

KO2
2.52 mol s−1 atm−1

KH2O 0.281 mol s−1 atm−1

� 26.1 s
42 H.-B. Huo et al. / Journal of P

(k) = [−y(k − 1), −y(k − 2), . . . ,

−y(k − na), x(k), x(k − 1), . . . , x(k − nb)]T
(na+nb+1)×1 (20)

. Model predictive control

MPC refers to a class of control algorithms in which a dynamic
odel of the plant is used to predict and optimize the future behav-

or of the process. The basic control strategy of the MPC is to select
set of future control horizons and minimize a cost function based
n the desired output trajectory over a prediction horizon with a
hosen length.

.1. Output voltage prediction

The MPC predicts the future output voltage of the SOFC with the
ammerstein model and past input–output data in this study.

Based on the established Hammerstein model, the predictive
utput voltage V̂dc(k + l) for p steps ahead can be obtained by suc-
essive iterations:

ˆdc(k + l) = −
na∑
i=1

aiV̂dc(k + l − i) +
nb∑
j=0

bjx(k + l − j), 0 ≤ l ≤ p (21)

here

(k) =
M∑

i=1

wi exp

(
−||Nf(k) − ci||2

2d2
i

)
(22)

.2. Reference trajectory

The control goal of the SOFC is that its output voltage can reach
he set point quickly and smoothly. The output voltage of the SOFC
hould follow a reference trajectory:

dcr(k + j) = ˛jVdc(k) + (1 − ˛j)Vsp (23)

here Vdcr(k + j) is the reference trajectory of the output voltage at
ime k + j, Vdc(k) is the actual output voltage at time k, Vsp is the set
oint of the output voltage, j = 1, 2, . . ., p are coincidence points, and
is a parameter (0 < ˛ < 1).

.3. Optimization criteria

The objective of the MPC controller is to compute future con-
rol moves which will minimize a criterion function based on the
esired output trajectory over a prediction horizon Hp. In predictive
ontrollers, the predictive control law can be yielded by minimizing
he cost function. Hence, the choice of the criterion function is of
aramount importance [23]. To obtain the appropriate control law,
he following criterion function is minimized. The criterion func-
ion is a quadratic function of the errors between the predicted
utput voltage and the desired trajectory (reference) over the pre-
iction horizon, and includes terms which penalize the excessive
hanges in the manipulated variables (the natural gas input flow).

=
Hp∑
j=1

[V̂dc(k + j) − Vdcr(k + j)]
2 + �

Hc∑
i=1

[Nf(k + i) − Nf(k + i − 1)]2

(24)

ubject to:
f, min ≤ Nf ≤ Nf, max

here V̂dc(k + j) is the predicted output voltage of the SOFC, Hc is
he control horizon, Nf(k + i) is the manipulated variable at time k + i,
nd � is the weighting factor.

�
�
�
r
r

ources 185 (2008) 338–344

The control signal (the natural gas input flow) changes only
nside the control horizon and remains constant afterward, i.e.,

f(k + j) = Nf(k + Hc − 1), j = Hc, . . . , Hp (25)

. Results

.1. Hammerstein model of the SOFC

To establish the desired Hammerstein model, we choose the nat-
ral gas input flow, the oxygen flow, the operating temperature, and
he stack current as the model inputs, the voltage as the output.
or keeping the utilization constant, the natural gas input flow can
e controlled according to the stack current which is proportional
o the terminal load. A decrease in the load current will in turn
ncreases the output voltage of the SOFC, while the decrease in the
urrent decreases the natural gas input flow.

For the purpose of identification, the white-box model described
n Section 2 is excited with band-limited white noise around the
ominal value of the natural gas input flow (Nf), while all the other

nputs are kept constant in their nominal values. The nominal oper-
ting conditions of the SOFC are given in Table 1 [5,16]. Changes in
he natural gas input flow are produced every 10 s, with a maxi-

um amplitude of ±70% of the nominal value. As a result, a set of
000 data points is collected from the simulation with a sampling
ime of 0.1 s. The first 3000 data are used to estimate the Hammer-
tein model of the SOFC, while the following 3000 data are used for
alidation purposes.

Through a large number of tests, a RBFNN with 6 hidden nodes
n the Hammerstein model is chosen for its better performance. The
A parameters are chosen as: population size P = 40, the maximum
umber of iterations = 50, the total length of every chromosome

s 3 × 6 × 8 + 2 × 8, pc = 0.6 and pm = 0.008. When a load disturbance
auses the stack current to have a step change (from 300 A to 270 A)
t 150 s, the actual output voltage and the predicted output volt-
ge of the Hammerstein model are represented in Fig. 4 by using
he above identification algorithm. Fig. 4 indicates that the pro-
osed Hammerstein modeling method is applicable to describe
he nonlinear dynamic behaviors of the SOFC, and the Hammer-
tein model of the SOFC presented in this paper is accurate and
alid.

.2. Fuel utilization and output voltage control
H2

O2
2.91 s

H2O 78.3 s

f 5 s
0.126 �

H O 1.145
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Fig. 6. Voltage control of the SOFC using MPC controller.
Fig. 4. Output voltage of the actual and identified Hammerstein models.

ignal which reduces from 300 A to 270 A at 150 s, and goes back
o 300 A after 650 s. In this situation, the control effect of the fuel
tilization is depicted in Fig. 5. From Fig. 5, we can see the fuel uti-

ization of the SOFC can be controlled as steady-state constant by
egulating the natural gas input flow according to the stack cur-
ent.

Based on the Hammerstein model, the MPC scheme can be
eveloped in succession. The objective of the MPC study is to main-
ain the output voltage of the SOFC as a desired value after the fuel
tilization is kept constant. The parameters for the MPC strategy are
hosen as: Hp = 40, Hc = 6 and ˛ = 0.3. The proposed Hammerstein
odel-based MPC algorithm is simulated and the result is shown

n Fig. 6, which clearly demonstrates the excellent performance of
he MPC scheme.

For the purposes of comparison, the voltage control result of the
OFC using PI controller proposed in [16] is depicted in Fig. 7. Com-
aring Fig. 6 with Fig. 7, one will notice that the output voltage of
he SOFC can achieve the desired value no matter which controller

bove is adopted. In the case of the above current disturbances, the
utput voltage using the MPC controller can achieve the desired
alue in repose. However, it is more fluctuant when the PI controller
s used to control the output voltage.

Fig. 5. Fuel utilization control of the SOFC.
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Fig. 7. Voltage control of the SOFC using PI controller.

To evaluate the performance of the control systems, the integral
f time absolute error (ITAE) is used:

TAE =
1200∑
k=1

k|Vdc(k) − Vsp(k)| (26)

he resulting ITAE using MPC is 1.4015e+005, which is smaller than
hat using PI controller (1.5762e+005). This indicates that the MPC
cheme based on the Hammerstein model has better control effects
han that of the PI controller developed in [16].

. Conclusions

To develop valid control strategies, a Hammerstein model of
he SOFC has been developed to describe the nonlinear dynamic
ehaviors of the output voltage and the natural gas input flow accu-
ately. The Hammerstein model adopted in this paper consists of
he RBFNN in series with the ARX model. Simulation results have

llustrated the applicability of the proposed Hammerstein model in

odeling the nonlinear dynamic properties of the SOFC.
For protecting the SOFC, a primary control loop has been

esigned to hold the fuel utilization as steady-state constant. Then
ased on the Hammerstein model, a nonlinear MPC controller has
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een developed to control the output voltage of the SOFC at a
esired value by regulating the natural gas input flow. The good
ontrol effect of the fuel utilization and the favorable performance
f the MPC controller for voltage control of the SOFC have been
estified in this study.

It is noteworthy that in the Hammerstein modeling the oper-
ting temperature of the SOFC has been assumed as constant
nd the details associated with concentration variations have not
een reported. In future works, a control oriented SOFC model
onsidering temperature effects and the details associated with
oncentration variations will be developed. Furthermore, based on
his model, some control strategy studies can be pursued.

cknowledgment

This work is supported by National 863 Scientific Project Devel-
pment Funds (no. 2006AA05Z148), PR China.

eferences

[1] Y.T. Qi, B. Huang, K.T. Chuang, Dynamic modeling of solid oxide fuel cell: the
effect of diffusion and inherent impedance, J. Power Sources 150 (1–2) (2005)
32–47.

[2] D.J. Hall, R.G. Colclaser, Transient modeling and simulation of a tubular solid
oxide fuel cell, IEEE Trans. Energy Convers. 14 (3) (1999) 749–753.

[3] J. Padulles, G.W. Ault, J.R. McDonald, An integrated SOFC plant dynamic model
for power systems simulation, J. Power Sources 86 (1–2) (2000) 495–500.

[4] K. Sedghisigarchi, A. Feliachi, Dynamic and transient analysis of power distribu-
tion systems with fuel cells-Part I: fuel-cell dynamic model, IEEE Trans. Energy
Convers. 19 (2) (2004) 423–428.
[5] Y. Zhu, K. Tomsovic, Development of models for analyzing the load-following
performance of microturbines and fuel cells, Elect. Power Syst. Res. 62 (1)
(2002) 1–11.

[6] F. Jurado, N. Acero, Nonlinear model identification of fuel cell power plant, in:
Proceedings of the 7th IEEE Africon Conference in Africa: Technology Innova-
tion, Gaborone, Botswana, 2004, pp. 769–774.

[

[

ources 185 (2008) 338–344

[7] F. Jurado, A method for the identification of solid oxide fuel cells using a Ham-
merstein model, J. Power Sources 154 (1) (2006) 145–152.

[8] R.K. Pearson, M. Pottmann, Gray-box identification of block-oriented nonlinear
models, J. Process Control 10 (4) (2000) 301–315.

[9] H.T. Su, T.J. McAvoy, Integration of multilayer perceptron networks and linear
dynamic models: a Hammerstein modeling approach, Ind. Eng. Chem. Res. 26
(1993) 1927–1936.

10] D.K. Rollins, N. Bhandari, A.M. Bassily, G.M. Colver, S.T. Chin, A continuous-time
nonlinear dynamic predictive modeling method for Hammerstein processes,
Ind. Eng. Chem. Res. 42 (4) (2003) 860–872.

11] A. Balestrino, A. Landi, M. Ould-Zmirli, L. Sani, Automatic nonlinear auto-tuning
method for Hammerstein modeling of electrical drives, IEEE Trans. Ind. Elec-
tron. 48 (3) (2001) 645–655.

12] H.B. Huo, Z.D. Zhong, X.J. Zhu, H.Y. Tu, Nonlinear dynamic modeling for a SOFC
stack by using a Hammerstein model, J. Power Sources 175 (1) (2008) 441–446.

13] P.G. Gallman, An iterative method for the identification of nonlinear systems
using a Uryson model, IEEE Trans. Autom. Control 20 (6) (1975) 771–775.

14] K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems
using neural networks, IEEE Trans. Neural Netw. 1 (1) (1990) 4–27.

15] C.E. Garcia, D.M. Prett, M. Morari, Model predictive control: theory and
practice—a survey, Automatica 25 (1991) 335–348.

16] Y.H. Li, S.S. Choi, S. Rajakaruna, An analysis of the control and operation of a solid
oxide fuel-cell power plant in an isolated system, IEEE Trans. Energy Convers.
20 (2) (2005) 381–387.

17] Y.H. Li, S. Rajakaruna, S.S. Choi, Control of a solid oxide fuel cell power plant in
a grid-connected system, IEEE Trans. Energy Convers. 22 (2) (2007) 405–413.

18] H. Sarimveis, A. Alexandridis, S. Mazarakis, G. Bafas, A new algorithm for devel-
oping dynamic radial basis function neural network models based on genetic
algorithms, Comput. Chem. Eng. 28 (1–2) (2004) 209–217.

19] Q. Chen, K. Worden, P. Peng, A.Y.T. Leung, Genetic algorithm with an improved
fitness function for (N)ARX modeling, Mech. Syst. Signal Proc. 21 (2) (2007)
994–1007.

20] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison-Wesley, Reading, MA, 1989.

21] Z.Q. Zhao, D.S. Huang, A mended hybrid learning algorithm for radial basis func-
tion neural networks to improve generalization capability, Appl. Math. Model.

31 (7) (2007) 1271–1281.

22] T. Hatanaka, K. Uosaki, M. Koga, Block oriented nonlinear model identification
by evolutionary computation approach, in: Proceedings of IEEE Conference on
Control Applications, Istanbul, Turkey, 2003, pp. 43–48.

23] E. Katende, A. Jutan, Nonlinear predictive control of complex processes, Ind.
Eng. Chem. Res. 35 (10) (1996) 3539–3546.


	Nonlinear model predictive control of SOFC based on a Hammerstein model
	Introduction
	Theory for the dynamic model of SOFC
	The balance of plant (BOP)
	Solid oxide fuel cell
	Fuel utilization

	Hammerstein model
	Problem statement
	Identification of the Hammerstein model
	Optimization of the RBFNN and the ARX model structure based GA
	Parameter identification of the ARX model


	Model predictive control
	Output voltage prediction
	Reference trajectory
	Optimization criteria

	Results
	Hammerstein model of the SOFC
	Fuel utilization and output voltage control

	Conclusions
	Acknowledgment
	References


